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 24 

SYNOPSIS 25 

 26 

Background. The emergence of Neisseria gonorrhoeae resistant to all currently available 27 

antimicrobial therapies poses a dire public health threat. New antimicrobial agents with activity 28 

against N. gonorrhoeae are urgently needed. Apramycin is an aminocyclitol aminoglycoside 29 

with broad-spectrum in vitro activity against multidrug-resistant Gram-negative pathogens and S. 30 

aureus.  However, its activity against N. gonorrhoeae has not been described.  31 

Objectives. The activity spectrum of apramycin against a collection of multi-drug resistant N. 32 

gonorrhoeae was assessed. Isolates tested included those both susceptible and resistant to the 33 

structurally distinct aminocyclitol, spectinomycin.  34 

Results. The modal MICs for apramycin and spectinomycin were 16 mg/L and 32 mg/L, 35 

respectively. The ECOFF for apramycin was 64 mg/L. No strains among seventy-seven tested 36 

had an MIC above this ECOFF, suggesting very low levels of acquired apramycin resistance.  In 37 

time-kill analysis, apramycin demonstrated rapid bactericidal activity comparable to 38 

spectinomycin. 39 

Conclusions. Apramycin has broad-spectrum, rapidly bactericidal activity against N. 40 

gonorrhoeae. Future pharmacokinetic and pharmacodynamic studies will be needed to determine 41 

whether apramycin and/or apramycin derivatives hold promise as new therapeutics for N. 42 

gonorrhoeae infection.  43 

  44 



 

INTRODUCTION 45 

 Neisseria gonorrhoeae is a sexually transmitted pathogen, which continues to present a 46 

significant and global public health challenge. According to the data from global sexually 47 

transmitted infection surveillance networks, an estimated 78 million cases of gonorrhea are 48 

diagnosed each year.1 With the introduction of effective antimicrobial agents in the 1940s, 49 

gonorrhea could be reliably treated; however, during the past few decades, successful treatment 50 

has become significantly more difficult due to the organism’s propensity to develop resistance to 51 

antimicrobial agents typically used for treatment.2-4  52 

 Antimicrobial resistance (AMR) in N. gonorrhoeae occurs by several mechanisms: drug 53 

inactivation, alteration of antimicrobial targets, efflux pumps, and/or decreased antimicrobial 54 

uptake. Several regional and global surveillance networks for AMR in N. gonorrhoeae have 55 

raised concerns regarding emerging multidrug-resistance based on these mechanisms that will 56 

ultimately lead to infection that is effectively untreatable with currently available agents.4-6  57 

 In 2012, the WHO published its “Global Action Plan to Control the Spread and Impact of 58 

Antimicrobial Resistance in Neisseria gonorrhoeae”.7, 8 This plan contains three important core 59 

components: rigorous AMR surveillance; early detection of AMR and treatment failures in 60 

individual patients; and development of antimicrobials with unique mechanisms of action. In 61 

response to this threat, several new antimicrobial agents, such as solithromycin, a 62 

fluoroketolide;; eravacycline, a glycylcycline; and zoliflodacin, a spiropyrimidinetrione, are in 63 

development.9-14 However, their potential contribution to treatment shortfalls and staying power 64 

against emerging resistance in N. gonorrhoeae is not yet established. Several studies have 65 

suggested that further evaluation of existing antimicrobial agents such as ertapenem, fosfomycin, 66 

and gentamicin may be warranted.15, 16  67 



 

 Aminoglycosides are potent Gram-negative agents with potential activity against N. 68 

gonorrhoeae.17 Concerns about treatment-associated ototoxicity and nephrotoxicity have 69 

generally precluded their use in N. gonorrhoeae treatment. However, gentamicin is the first line 70 

of treatment in Malawi, based on cost, proven efficacy, and lack of obvious toxic effects after a 71 

single intramuscular injection.18, 19 Gentamicin has been used either alone or in combination with 72 

doxycycline.18, 19 The emergence of isolates with reduced susceptibility, but not resistance, has 73 

been variably observed in different longitudinal studies.18-22 Interestingly, the structurally distinct 74 

aminocyclitols, spectinomycin and apramycin, are known or believed to have significantly lower 75 

risk for these side effects.23, 24 Spectinomycin is an approved agent for Neisseria gonorrhoeae 76 

treatment via intramuscular injection, and resistance is rarely observed.25 However, this agent is 77 

neither routinely available nor routinely used for human therapy.25 It is unavailable in 30 of 38 78 

European countries and in the United States.26 79 

 Apramycin is currently available as a veterinary treatment for bovine mastitis and 80 

diarrheal disease in farm animals.27-30 It possesses an unusual bicyclic octadiose aminosugar 81 

linked to a monosubstituted 4-0-deoxystrepatamine moiety. Apramycin was originally isolated in 82 

1967 from Streptomyces tenebrarius obtained isolated from a Sonora, Mexico soil sample .31,32, 33 83 

Apramycin is believed to bind to the 16s rRNA A-decoding site of the 30S ribosomal subunit 84 

and thereby inhibit peptide chain elongation and also lead to incorporation of noncognate amino 85 

acids through induced miscoding activity.34 Resistance is primarily conferred by a single 86 

aminoglycoside modifying enzyme, AAC(3)-IV, which circulates at very low frequency in 87 

Gram-negative pathogens. 35, 36 Importantly, in contrast to other aminoglycosides, apramycin's 88 

activity is not blocked by circulating 1405G rRNA methylases which are found with increasing 89 

frequency in NDM-1 carbapenemase-producing Enterobacteriaceae.27, 37-40  90 



 

Apramycin demonstrates broad-spectrum in vitro activity against human isolates of 91 

multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, carbapenem-resistant 92 

Enterobacteriaceae, and Staphylococcus aureus,15, 16, 35, 36, 41, 42 and rapid in vitro bactericidal 93 

activity.43 It has also demonstrated in vivo activity against A. baumannii, S. aureus, and 94 

Mycobacterium tuberculosis in murine models.43, 44 Therefore, based on previously demonstrated 95 

broad-spectrum activity and other compelling properties, we evaluated in vitro activity of 96 

apramycin against contemporary clinical strains of Neisseria gonorrhoeae as a first step in 97 

assessing whether apramycin or potential derivatives of apramycin might serve as future 98 

therapeutics against this problematic pathogen. 99 

 100 

MATERIALS AND METHODS 101 

  102 

Bacterial isolates 103 

A total of 72 clinical isolates of Neisseria gonorrhoeae were tested against spectinomycin and 104 

apramycin. Forty-nine isolates were obtained from the FDA-CDC Antimicrobial Resistance 105 

Isolate Bank (https://www.cdc.gov/drugresistance/resistance-bank/). Twenty-one isolates were 106 

from the CDC Gonococcal Isolate Surveillance Program (GISP) Bank at Beth Israel Deaconess 107 

Medical Center (BIDMC). and were obtained from several locations in the United States 108 

(Chicago, IL; Minneapolis, MN; New York, NY; Boston, MA; and Erie, PA). Testing of de-109 

identified GISP isolates was approved by the Institution Review Board at BIDMC. Three 110 

spectinomycin resistant isolates were obtained from the Culture Collection University of 111 

Gothenburg (CCUG): CCUG 15821 (WHO-A); CCUG 57601 (WHO-O) and CCUG 41811. 112 

ATCC 49226/F-18 and CDC F-28 are spectinomycin susceptible and resistant quality control 113 



 

strains, respectively. These quality control strains were tested for spectinomycin susceptibility in 114 

duplicate on each day of testing, and results were consistently within the acceptable range. 115 

Among the FDA-CDC Antimicrobial Resistance Isolate Bank isolates, 100%, 82%, 100%, 2%, 116 

80%, and 0% were non-susceptible to penicillin, ciprofloxacin, tetracycline, ceftriaxone, 117 

cefpodoxime, and spectinomycin, respectively, based on CLSI susceptibility criteria (i.e., MIC > 118 

0.06, 0.06, 0.25, 0.25, 0.5, and 32 mg/L, respectively) and strain MIC data. 119 

 120 

Agar dilution antimicrobial susceptibility testing 121 

 Spectinomycin was obtained from Sigma Aldrich (St. Louis, MO, USA) or Alfa Aesar 122 

(Tewksbury, MA, USA), and apramycin was obtained from Alfa Aesar. AST was performed 123 

using the agar dilution (AD) method following CLSI guidelines and the CDC’s GISP protocol 124 

for AST of N. gonorrhoeae.45, 46 From spectinomycin stock solutions, appropriate working 125 

concentrations were prepared to achieve a range of test concentrations from 0.5 to 1024 mg/L. 126 

Similarly, from apramycin stock solutions, appropriate working concentrations were prepared to 127 

achieve a range of test concentrations from 0.5 to 256 mg/L.  128 

 For inoculum preparation, colonies of all N. gonorrhoeae isolates (including the QC 129 

strains) from a chocolate agar plate (20 to 24 h of incubation) were suspended in Mueller-Hinton 130 

broth to prepare a solution adjusted to a 0.5 McFarland standard density. The agar plates were 131 

inoculated with 1 to 2 µL of each suspension using a Steers inoculum-replicating apparatus. Agar 132 

growth control plates (no antimicrobial agent added) were inoculated at the beginning and end of 133 

every test run to ensure that there was no contamination or antimicrobial carryover during 134 

inoculation. The endpoints for determining the MIC by AD testing were interpreted as no visible 135 

growth on an agar plate for a specific antimicrobial concentration. The CLSI categorical 136 



 

interpretive criteria of ≤ 32 mg/L, susceptible; 64 mg/L, intermediate; and ≥ 128 mg/L were 137 

applied for spectinomycin.24   138 

  139 

Time-kill studies 140 

 Time-kill studies were performed per CLSI recommendations47, 48 with substitution of 141 

Wade-Graver liquid medium (WGM), as previously described,17, 49 to permit robust growth of N. 142 

gonorrhoeae. Antibiotic stocks were diluted in 10 mL of WGM in 25 x 150 mm glass round-143 

bottom tubes to achieve multiples of the MIC for each strain tested. To prepare the inoculum, 144 

100 µL of a 0.5 McFarland suspension of colonies from an overnight Chocolate Agar plate 145 

(Remel, Lenexa, KS) were added to 5 mL of WGM, and incubated at 35°C in a 5% CO2 146 

incubator for eight to ten hours until log phase (i.e., 1 to 1.5 McFarland). The culture was then 147 

adjusted to a turbidity of 1.0 McFarland, and 200 µL was inoculated into each growth tube 148 

containing antibiotic dilutions.  149 

 During incubation of tube cultures on a shaker platform at 35°C, 5% CO2 atmosphere, 150 

aliquots were removed at indicated time points, and tenfold serial dilutions prepared in 0.9% 151 

sodium chloride. A 10 µL drop from each dilution was spotted on a Chocolate Agar plate (54, 152 

55) and incubated overnight. Drops containing 3 to 30 colonies were considered “countable” and 153 

used for cfu determination.  If more than one dilution was countable, the cfu of the two dilutions 154 

was averaged. If no drops were countable, consecutive drops above and below the countable 155 

range were averaged. The limit of detection was 300 cfu/mL. Antibiotic carryover effect was not 156 

observed. Bactericidal activity was defined as a ≥3 log10 cfu/mL reduction sustained at 24 hours 157 

of incubation at ≤ 4 times the MIC determined by agar dilution (39, 56). 158 

 159 



 

Genomic analysis 160 

 We queried the AAC(3)-IV and ApmA protein sequence against all predicted proteins 161 

from N. gonorrhoeae available at the National Center for Biotechnology Information (NCBI) 162 

using the BlastP50 algorithm with an expect value (e-value) cutoff of < 10-10. All N. gonorrhoeae  163 

protein sequences available in the CARD Prevalence, Resistomes, and Variant database 164 

(https://card.mcmaster.ca/download), which uses a more conservative expect value threshold of 165 

< 10-30, were also screened for matches to all known apramycin resistance determinants.51, 52  166 

 167 

RESULTS AND DISCUSSION 168 

 A total of 72 strains of N. gonorrhoeae were tested. MIC distributions for apramycin and 169 

spectinomycin are shown in Fig. 1A and 1B, respectively. The modal MICs for apramycin and 170 

spectinomycin were 16 mg/L and 32 mg/L, respectively. No categorical interpretative 171 

breakpoints are available for apramycin from either EUCAST or CLSI, and therefore categorical 172 

assessment was not made. An apramycin epidemiological cutoff value (ECOFF) of 64 mg/L was 173 

assigned based on visual inspection.53 There were no strains with an apramycin MIC above this 174 

value suggesting absence of acquired resistance in the tested strain set. 175 

 For the 68 spectinomycin-susceptible strains of N. gonorrhoeae, 56 isolates (82%) had 176 

identical apramycin and spectinomycin MIC values; 13 isolates (19%) had a two-fold dilution 177 

lower apramycin MIC; and 3 isolates (4%) and 4 isolates (6%) had a two-fold and four-fold 178 

dilution higher apramycin MIC, respectively. Four known spectinomycin resistant isolates were 179 

tested and confirmed to be spectinomycin resistant (MIC > 1024 mg/L). WHO-O contains the 180 

C1192T spectinomycin resistance mutation in the 16S rRNA gene.25 WHO-A contains the T22P 181 

spectinomycin resistance mutation in the ribosomal S5 protein (encoded by the rpsE gene).25 The 182 



 

mutations in F-28 and CCUG.41811 have not yet been characterized. Notably, high-level 183 

spectinomycin resistance in these strains did not confer detectable cross-resistance to apramycin. 184 

Two of the spectinomycin resistant isolates had an apramycin MIC of 16 mg/L, and two had an 185 

apramycin MIC of 32 mg/L, consistent with findings in spectinomycin susceptible strains.  186 

 Four representative strains were tested in time-kill analysis including the ATCC type 187 

strain F-18; spectinomycin resistant F-28; and FDA-CDC Isolate Bank strains 193 and 200. 188 

Rapid, sustained bactericidal activity was observed for both apramycin and spectinomycin within 189 

four hours with the exception, as expected, for spectinomycin in the spectinomycin-resistant 190 

strain, F-28 (Fig. 2). Time-kill results were consistent with prior observations of rapid 191 

bactericidal activity of spectinomycin17, 54 and gentamicin17 for N. gonorrhoeae. Our data 192 

suggest that apramycin also exhibits similar bactericidal activity. 193 

 In Gram-negative organisms, a single aminoglycoside modifying enzyme, AAC(3)-IV, 194 

has been described that inactivates apramycin through acetylation of the C-3 amine on the 195 

deoxystreptamine ring.55 The presence of this resistance element is rare, even in multidrug-196 

resistant organisms such as carbapenem-resistant Enterobacteriaceae and A. baumannii; 197 

consistent with the infrequency of organisms with MICs above the ECOFF's for these 198 

pathogens.36, 43 A BLASTP56 search performed August 12, 2018 for AAC(3)-IV found no 199 

matches to N. gonorrhoeae among the 451 complete genomes and other N. gonorrhoeae 200 

sequence available in the National Center for Biotechnology Information databases (NCBI).51 201 

Similarly, no significant homology was found with ApmA, an aminoglycoside-modifying 202 

enzyme, which also inactivates apramycin, and has been described recently in two 203 

staphylococcal porcine isolates.57, 58  204 



 

 Of note, apramycin remains active in strains expressing ribosomal methylases that 205 

modify 16s rRNA at position G1405, in contrast to aminoglycosides currently used for human 206 

therapy and the novel aminoglycoside, plazomicin.59 In contrast, activity of both apramycin and 207 

the aforementioned aminoglycosides are blocked by NpmA, identified in one E. coli clinical 208 

isolate, and KamB, found in aminoglycoside-producing Actinomycetales, that methylate 16s 209 

rRNA at position A1408.60, 61 However, again BLASTP analysis did not identify any significant 210 

homology between these proteins and available N. gonorrhoeae sequence. Therefore, our 211 

analysis also indicates that, currently, A1408 ribosomal rRNA methylases, that would undermine 212 

apramycin activity, must be extremely rare to absent in N. gonorrhoeae. Furthermore, a search of 213 

the curated CARD Prevalence, Resistomes, & Variants database (Version 3.0.2) also did not 214 

identify apramycin resistance elements in the N. gonorrhoeae genomic sequence. Only a single 215 

kanamycin aminoglycoside modifying enzyme, APH(3')-Ia,62 was identified at very low 216 

prevalence (0.24%) in the N. gonorrhoeae sequences available in the NCBI database. 217 

 Several limitations of our study should be noted. First, spectinomycin does not achieve 218 

sufficient pharyngeal levels for effective treatment of gonococcal pharyngitis,25 although cure of 219 

pharyngeal infection with gentamicin used in combination azithromycin appears to occur.21 220 

Based on these observations, it is possible that apramycin, also a highly hydrophilic 221 

aminocyclitol, may have similar limitations. Second, isolates with reduced susceptibility to 222 

gentamicin, observed in regions where gentamicin is used for primary treatment,19, 22 were not 223 

available to us. It is possible such reduced susceptibility, potentially based on decreased bacterial 224 

permeability or acquisition of efflux pumps, could the basis for cross resistance to apramycin, an 225 

issue that warrants further study. Furthermore, it is not yet established with what frequency 226 

spontaneous apramycin resistance would arise under direct selective pressure.   227 



 

 Taken together, the lack of acquired resistance (i.e., strains with MIC values above the 228 

ECOFF and genetic evidence for resistance elements), rapid bactericidal activity, and putative 229 

lack of typical aminoglycoside associated toxicities,24 highlight the potential of apramycin, either 230 

directly and/or after derivatization, for development as an alternate treatment of multidrug-231 

resistant N. gonorrhoeae. However, further experimental and human pharmacokinetic and 232 

pharmacodynamic studies are needed to determine whether efficacious drug levels can be 233 

obtained at sites of infection, and whether compelling dosing strategies, such as single, high-dose 234 

administration for cure, can be established.   235 

  236 
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FIGURE LEGENDS 419 

 420 

Figure 1. Apramycin and spectinomycin MIC Distribution for N. gonorrhoeae 421 

 422 

Figure 2. Time-kill analysis. Apramycin (APR) and spectinomycin (SPT) were tested at 423 

multiples of their respective MIC values indicated in parentheses in panel titles. A no antibiotic 424 

control and a doubling dilution series of increasing concentrations tested are indicated 425 

respectively by filled circles, open squares, open triangles, open inverted triangles, open 426 

diamonds, and open circles.. Specific concentrations tested in mg/L are indicated in respective 427 

panel legends. Both APR and SPT were bactericidal.	428 

 429 
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