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Abstract   38 

We evaluated activity of apramycin, a non-ototoxic/non-nephrotoxic aminocyclitol against 141 39 

clinical Enterobacteriaceae isolates, 51% of which were non-susceptible to carbapenems (CRE).  40 

Among CRE, 70.8% were apramycin susceptible, which compared favorably to aminoglycosides 41 

in current clinical use. Our data suggest that apramycin deserves further investigation as a 42 

repurposed, anti-CRE therapeutic. 43 

 44 
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Treatment options for carbapenem-resistant Enterobacteriaceae (CRE) infections are 52 

severely limited (1, 2). Aminoglycosides are among the few drugs that retain in vitro activity 53 

against CRE (3), and combination therapy that includes gentamicin appear particularly 54 

efficacious (4, 5). However, up to 33% of patients treated with clinically-approved 55 

aminoglycosides develop some degree of irreversible hearing loss (6) and  up to 25% develop 56 

kidney damage (7). 57 

Interestingly, structurally unique aminoglycosides, specifically apramycin and 58 

spectinomycin, appear to have significantly reduced ototoxicity and nephrotoxicity effects (8-59 

12). Further, they are unaffected by most commonly occurring aminoglycoside modifying 60 

enzymes (13) and activity may therefore potentially be preserved in multidrug-resistant 61 

pathogens. 62 

Previous evidence suggests resistance to apramycin, a veterinary aminocyclitol, is low 63 

among human CRE isolates in the United Kingdom (3) and animal extended-spectrum beta-64 

lactamase producing Escherichia coli isolates from Germany (14). Furthermore, in a recent high 65 

throughput screening effort, we identified apramycin as a potent inhibitor of a highly resistant 66 

CRE screening strain (15). Nevertheless, the activity spectrum of apramycin among human 67 

Enterobacteriaceae isolates, specifically CRE, in the United States has been underexplored.  68 

We therefore evaluated a collection of 141 strains of Enterobacteriaceae of United States 69 

origin for their susceptibility to apramycin and aminoglycosides in clinical use.  Of these strains, 70 

114 were collected at our institution between years 2008-2014 under IRB-approved protocols, 71 

and 27 were from the Biodefense and Emerging Infections (BEI) Research Resources, NIAID, 72 

NIH isolated between years 2004-2013 with the exception of a single strain isolated in 1981. In 73 

total, 72 were CRE (meropenem MIC ≥ 2 µg/ml). Carbapenem resistance mechanisms were 74 
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identified in 41 of 44 CRE strains for which genome sequences were available. Of the identified 75 

resistance mechanisms, 51% (n = 21) were KPC-3 and 39% (n = 16) were KPC-2. Other 76 

resistance elements represented included KPC-4 (n = 2) and SME-2 (n = 2). Apramycin was 77 

tested against all strains using the broth microdilution method according to CLSI guidelines (16). 78 

All experiments included E. coli ATCC 25922 as a quality control strain with MIC assay 79 

acceptability limits (4-8 µg ml-1) as defined previously (17). Apramycin categorical breakpoints 80 

were based on the most recent National Antibiotic Resistance Monitoring Study (NARMS) 81 

report in which strains were classified as apramycin susceptible (MIC ≤ 8 µg ml-1), intermediate 82 

(MIC = 16-32 µg ml-1), or resistant (MIC ≥ 64 µg ml-1) (18). Notably, pharmacokinetics of 83 

apramycin has been investigated in both mammals and birds where important parameters 84 

including volume of distribution, area under the curve (AUC), and half-life are similar to other 85 

aminoglycosides such as gentamicin and kanamycin (19-21). As such, breakpoints are 86 

potentially generalizable to human infections. 87 

Amikacin, gentamicin, tobramycin, and meropenem Vitek 2 (bioMerieux, Inc., Durham, 88 

NC) susceptibility data for strains isolated at our institution were obtained from clinical 89 

laboratory records.  Non-susceptible meropenem results were confirmed using Microscan broth 90 

microdilution panel testing (Beckman Coulter, Inc, Brea, CA).  For the BEI strains, 91 

aminoglycoside and meropenem susceptibility data were determined in parallel with apramycin 92 

testing using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution 93 

reference method (16) with assays quality controlled against E. coli ATCC 25922 and 94 

Pseudomonas aeruginosa ATCC 27853 (22). CLSI breakpoints were used for categorical 95 

susceptibility interpretation (22): in which categorical susceptibility breakpoints for gentamicin, 96 

tobramycin, and amikacin were ≤ 4, ≤4, and ≤16 µg ml-1, respectively. 97 
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Overall, 78% of bacteria tested were susceptible to apramycin (see table 1).  Importantly, 98 

among 72 CRE (carbapenem MIC ≥ 2 µg ml-1), 70.8% and 7.0% were apramycin susceptible and 99 

intermediate respectively. Among the 69 carbapenem-susceptible strains, 85.5% and 13.1% were 100 

apramycin susceptible and intermediate, respectively. Only one carbapenem susceptible strain 101 

was apramycin resistant (MIC = 64 µg ml-1). The MIC distribution for all strains tested is 102 

summarized in Figure 1.   103 

The apramycin susceptibility rate among CRE was also compared to other 104 

aminoglycosides using Fisher’s exact test with significance defined as P < 0.05. Notably, the 105 

70.8% apramycin susceptibility rate was significantly higher than the 47.2% gentamicin (P = 106 

0.003) and 34.7% tobramycin (p < 0.001) susceptibility rates, but not significantly different from 107 

the 65.3% amikacin (p > 0.05) susceptibility rate.  A total of 10 strains (7.1%), all of which were 108 

carbapenem-resistant K. pneumoniae, were non-susceptible to all aminoglycosides inclusive of 109 

apramycin. Importantly, we found 7 strains (10% of the CRE collection) which were susceptible 110 

to apramycin but otherwise resistant to all other aminoglycosides tested.  111 

Interestingly, high-level apramycin resistance (MIC > 256 µg ml-1) was restricted to 112 

carbapenem-resistant Klebsiella pneumoniae (n = 14) and a single strain of Enterobacter 113 

suggesting that these strains may have specific genetic determinants contributing to high-level 114 

apramycin resistance.  We therefore searched for specific aminoglycoside resistance mechanisms 115 

in the 98 strains for which genome sequences were available either through NCBI or the Broad 116 

Institute (Carbapenem Resistance initiative, Broad Institute, broadinstitute.org). Each genome 117 

was queried against all proteins annotated as conferring resistance to aminoglycosides in the 118 

Comprehensive Antibiotic Resistance Database (CARD) (23) using a custom Python script 119 

controlling the BLAST+ analysis software (e-value cutoff = 10-20) (24, 25). As expected, Aac(3)-120 
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IVa, one of the few previously identified apramycin resistance enzymes (26), was detected in the 121 

majority (9 of 13) of highly apramycin resistant strains (MIC > 256 µg ml-1) and none of the 122 

apramycin intermediate or susceptible strains. These strains were also resistant to gentamicin and 123 

tobramycin, consistent with the substrate specificity of this enzyme (27). Other apramycin 124 

resistance determinants, Aac(1) (28) or ribosomal methylases (29), were not detected in the 125 

strain set. 126 

Two strains of Klebsiella pneumoniae (apramycin MIC > 256 µg ml-1) were non-127 

susceptible to all aminoglycosides tested, but contained no detectable apramycin modifying 128 

enzyme. This phenotype may potentially be explained by reduced permeability to and/or active 129 

efflux of aminoglycosides, resistance mechanisms which are more commonly associated with 130 

Pseudomonas spp. (30, 31). Unexpectedly, we also identified two strains with susceptibility to 131 

all aminoglycosides except for apramycin (MIC > 256 µg ml-1). We hypothesize that these latter 132 

strains may carry uncharacterized resistance mechanisms highly specific to apramycin which do 133 

not appear in the CARD database. 134 

 In this work, we found that apramycin shows excellent in vitro activity against 135 

carbapenem-susceptible strains of Enterobacteriaceae and retains equal or better activity against 136 

CRE compared to gentamicin, tobramycin and amikacin.  Furthermore, it is putatively less toxic 137 

than these other aminoglycosides and as a scaffold may be amenable to medicinal chemistry 138 

modification to further increase bacterial selectivity (32).  As such, apramycin or derivatives 139 

appear worthy of further investigation for treatment of Enterobacteriacae infection inclusive of 140 

CRE. 141 

 142 
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Figure Legend. 246 

 247 

Figure 1. Apramycin MIC distribution for Enterobacteriaceae strains (n = 141) examined in 248 

this study. 249 
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